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It is shown that the acoustic wave equation in a linear shear flow always has
a critical layer, where the Doppler shifted frequency vanishes; since this is the only
singularity of the wave equation apart from the point at infinity, the power series
solution about the critical layer has infinite radius of convergence. Two linearly
independent solutions are even and odd functions of distance from the critical
layer. Their plots show that acoustic oscillations are suppressed near the critical
layer. A linear combination of these solutions specifies the general acoustic field;
the constants of integration are determined from boundary conditions of which
several examples are given. The total acoustic field is illustrated for rigid and
impedance wall conditions. The cases illustrated include both real and complex
wave fields. These wave fields are small amplitude perturbations of the acoustic
wave equation in a linear shear flow; it is shown (in the Appendix) that the
perturbations of vorticity and dilatation are coupled, and thus combine features
of ‘‘acoustic’’ and ‘‘hydrodynamic’’ modes.
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1. INTRODUCTION

The wave equation describing the propagation of sound in a transversely sheared
unidirectional flow [1, 2], has been solved mostly by approximate methods, either
analytical or numerical [3–18]. Exact analytical solutions appear in the literature
only in one case, concerning sound propagation in a linear shear flow in three
forms: (i) in terms of parabolic cylinder functions [19], for an unbounded linear
velocity profile; (ii) in terms of Whittaker functions [20, 21] for a linear velocity
profile or a linear velocity matching two uniform streams, to represent a shear
layer; (iii) in terms of confluent hypergeometric functions, for a linear velocity
profile, or a linear velocity matched to a uniform stream to represent a boundary
layer [22–24]. Series solutions without explicit reference to a particular special
functions had been obtained before [25, 26]. In the present paper the linear velocity
profile is reconsidered, to show that in this case the acoustic wave equation has
a regular singularity, which has been used as expansion point in the analysis
appearing in the literature. This singularity corresponds to the vanishing of the
Doppler shifted frequency, and thus may occur for other velocity profiles as well.
This is an instance of the occurrence in acoustics of the critical layer which has
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been studied extensively for other types of waves: e.g., internal [27–29], inertial
[30], instability [31], acoustic–gravity [32–34] and hydromagnetic [35–41].

In contrast to the acoustics of quasi-one-dimensional ‘‘plug’’ flow in a nozzle
of varying cross-section [42–44] for which several exact solutions exist [45–51], the
only exact solution for a sheared mean flow is for the case of a linear velocity
profile which, through different changes of variable, has been expressed in terms
of parabolic cylinder functions [19], Whittaker functions [20, 21] or confluent
hypergeometric functions [22–24]. There has been perhaps insufficient attention to
the physical effects underlying these mathematical solutions: viz., the existence of
a critical layer, where sound can be absorbed or reflected. The critical layer for
sound in a shear flow corresponds to the ‘‘turning point’’ identified in connection
with some approximate methods [13, 14, 52]; the ray theory [53–55] does not apply
at such a singularity, where the usual forms of conservation of wave action break
down [56, 57]. Some of the literature leaves unmentioned the existence of a critical
layer [19], whereas in other cases its relevance is perhaps too lightly dismissed as
a feature worthy of less attention [12]. In fact, a critical layer is always present
in the acoustics of a linear shear flow, and it plays a central role in the solution
of the wave equation, because it is the only singularity at finite distance; thus (i)
a series expansion about any point y1 other than the critical layer yc , would have
its radius of convergence limited by =y− y1=ER0 =yc − y1= by it, and (ii) a series
expansion about the critical layer has an infinite radius of convergence: i.e., it
covers the whole flow region. The latter solution (ii) can be obtained by the
classical Frobenius–Fuchs method [58–62], and is suitable for a discussion of the
physics of the interaction of sound with flow.

After a discussion of the literature in the introduction, the starting point for the
present work is the presentation of the method of solution of the acoustic wave
equation (Figure 1) in a linear shear flow (section 2). Upon taking as an example
an earlier solution [19], it is shown that the critical layer was implicitly used as
the center for a power series expansion (section 2.1). Making an explicit change
of independent variable, which places the critical layer at the origin, and the wall
(or point of zero flow velocity) at position unity (section 2.2), leads, without any
further transformations, to a second order differential equation with variable
coefficients, which has the critical layer as a regular singularity and the point at
infinity as an irregular singularity (section 2.3). Although the latter irregular
singularity is of higher degree than those for the parabolic cylinder or confluent
hypergeometric function, an exact solution can (section 3) still be obtained by the
Frobenius–Fuchs method (section 3.1); this solution involves a linear combination
of even and odd functions of the distance from the critical layer (section 3.2) which
are plotted (Figures 2–5) for several values of the two dimensionless parameters
of the problem giving (section 3.3) real waveforms. By a further change of
independent variable, which places the wall at a variable (not necessarily unit)
distance from the critical layer, the problem is reduced to a single parameter
(section 4) thus simplifying the plotting of solutions (Figures 6, 7 and 8); the latter
parameter is complex in the case (Figures 13 to 15) of complex wavenumber
(section 4.1). Complex solutions also occur for certain types of boundary
conditions, e.g., an impedance wall (section 4.2) leads to a complex wavefield
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(Figures 9, 11, 12, 16 and 17), whereas a rigid wall leads to a real waveform
(Figure 10), if the other boundary condition is real (section 4.3). The discussion
addresses the issue of the distinction [2, 12] between ‘‘acoustic’’ and
‘‘hydrodynamic’’ modes, and the appendix shows that for sound in a linear shear
flow the vorticity and dilatation are coupled. The present discussion shows that
the role of the critical layer in acoustics [63, 64] is not dissimilar to that in other
branches of wave theory [65, 66].

2. METHOD OF EXACT SOLUTION

The examination of one of the solutions in the literature [19] shows that the
critical layer has implicitly been taken as center for a power series expansion; the
latter can be obtained quite simply, when using the standard Frobenius–Fuchs
method, via a simple change of independent variable which places the critical layer
at the origin and the wall at position unity; no changes of dependent variable are
needed, and the series solutions follow without need to refer to particular special
functions.

2.1.     

The acoustic pressure p in a steady mean homentropic flow, in the x direction,
sheared in the y direction, satisfies the wave equation [2]

(d/dt)((1/c2)d2p/dt2 −92p)−2(dU/dy)12p/1x 1y=0, (1a)

where d/dt denotes the material derivative,

U� =U(y)ēx , d/dt= 1/1t+U(y)1/1x, (1b)

and c is the adiabatic sound speed, assumed to be constant. Since the mean flow
properties do not depend on the time t or the longitudinal co-ordinate x, the
acoustic pressure is conveniently represented by a Fourier integral in the time and
the longitudinal co-ordinate:

P(x, y, t)=g
+

− g
a

a

P(y; k, v) ei(kx−vt) dk dv. (2)

Here P is the pressure perturbation spectrum, for a wave of frequency v and
horizontal wavenumber k, at a distance y, say, from a wall. The dependence of
the acoustic pressure on the transverse coordinate y is specified by substituting
equation (2) into the acoustic wave equation in a shear flow (1a) leading to

P0+ {2kU'/(v− kU)}P'+ {(v− kU)2/c2 − k2}P=0, (3)

where U(y) is the velocity profile of the shear flow, and a prime denotes the
derivative with respect to y: e.g., P'0 dP/dy, P00 d2P/dy2.

In the case of linear shear flow (see Figure 1), specified by the constant vorticity

q0 dU/dy=const; U(y)= qy, (4a, b)
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the acoustic wave equation (3) takes the form

(v− qky)P0+2kqP'+ (v− qky){(v− qky)2/c2 − k2}P=0. (5)

One of the approaches to the problem in the literature [19] is to use the change
of variable:

j=z2i/U'k(v− kU)/c=z2i/qk(v− kqy)/c, (6)

which places the origin at the layer of the zero Doppler shifted frequency:

v*(y)0v− kU(y)=v− kqy. (7)

The layer of zero Doppler shifted frequency is known in wave theory as a critical
layer [27–41, 65, 66], and in its vicinity ray theory breaks down. Note that a linear
shear flow always has a critical layer, at yc =v/kq, which appears as a singularity
in the wave equation (5). Thus the physical interpretation of the change of
independent variable (6) is that, apart from a multiplying factor, it places the
origin at the critical layer for sound in a linear shear flow.

Besides the change of independent variable (6), a change of dependent variable
[19] was used,

P= {ebj2/2/(b+1/2)} d (e−bj2/2Q)/dj, (8)

where b0 k/2q, leading to a third order differential equation for Q:

(d/dj){j−2 e−bj2/2[Q0−(b+ j2/4)Q]}=0, (9)

instead of a second order differential equation for P. Since the acoustic problem
specifies two boundary conditions for the pressure P, the question arises of how
to find three boundary conditions for the variable Q in equation (9). In other
words, since there are three linearly independent solutions Q of equation (9), it
is necessary to show that the transformation (8) leads to two linearly independent
solutions for P. This issue is bypassed since in [19] what is solved is not the
equation (9) in general, but the particular case in which the term in curly brackets
vanishes:

Q0+[(k/2V)2 − j2/4]Q=0; (10)

the nature of the singularity of equation (10) at j=0 may be different from that
of the singularity of equation (9) at j=0. In fact equation (10) is devoid of

Figure 1. A linear shear flow, of constant vorticity q has a critical layer yc for an incident acoustic
wave of frequency v and horizontal wavenumber k, where the Doppler shifted frequency vanishes.
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singularities, whereas equation (9) has a regular singularity at j=0. Thus
although equation (10) is exactly solvable [19] in terms of parabolic cylinder
functions, this (i) is not necessarily the general solution of the acoustic wave
equation in a linear shear flow because of the restriction in passing from equation
(9) to equation (10), and (ii) it may fail to represent accurately the sound field near
the critical layer, because the critical layer x=0 is a regular point of the
differential equation (10) and a regular singularity of equation (9).

2.2.     

This leads to a reconsideration of the problem of acoustic propagation in a
linear shear flow (4a, b), starting from the wave equation (5). The critical layer is
located at a distance y= yc from the wall such that the Doppler shifted frequency
(7) vanishes,

v*(yc )=0\ yc =v/kq, (11a, b)

suggesting the change of independent variable

j0v*(y)/v=1−(kq/v)y=1− y/yc , F(j)=P(y, k, v), (12a, b)

which places the critical layer at the origin jc =0 and the wall y=0 at the point
unity j=1. The wall y=0 is understood to be the line of zero mean flow velocity.
The corresponding dependent variable (12b) satisfies a second order differential
equation with polynominal coefficients of degree up to three,

jF0−2F'+ aj(bj2 −1)F=0, (13)

where the prime denotes the derivative with respect to j, viz., F'0 dF/dj, and

a0 (v/q)2, b0 (v/kc)2 (14a, b)

are dimensionless parameters.
The first dimensionless parameter (14a) is the square of the ratio of the wave

frequency to the mean flow vorticity, i.e., is large for high frequency waves in weak
vorticity, so that shear flow effects should be more important for small a. The
second dimensionless parameter would be unity, b=1, for acoustic propagation
parallel to the mean flow v= kc, and greater than unity, bq 1, for oblique waves
vq kc, in the case of ray theory, when a global dispersion relation would exist.
The presence of the shear flow implies that the solution of the wave equation (5)
is not sinusoidal in the y direction; hence there is no wavenumber in that direction,
and no general dispersion relation. It is preferable to interpret the second
dimensionless parameter (14b) as b0 (u/c)2, the square of the ratio of the
horizontal phase speed of the wave u0v/k to the sound speed c; thus b is smaller,
equal or larger than unity respectively for subsonic, sonic or supersonic horizontal
phase speeds (by horizontal is meant parallel to the wall or the mean flow). Note
that the horizontal phase speed always exists (1a), because the flow is uniform in
the x direction.
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The critical layer j=0 is a regular singularity of the wave equation [61, 62]

{1}j2F0+ {−2}jF+ {aj2(bj2 −1)}F=0, (15)

because the terms in curly brackets are analytic functions of j, in the
neighbourhood of j=0. In fact they are analytic functions of j in the whole finite
complex j-plane =j=Qa, showing that the only other possible singularity of the
differential equation (15) is the point at infinity: j=a. The behaviour of the
solution at infinity is specified by the inverse variable near the origin,

j=1/h, C(h)0F(j), (16a, b)

viz., leading to the differential equation

h2C0+4hC'+ (a/h)(b/h2 −1)C=0, (17)

where the terms in curved brackets are singular at h=0. Thus the singularity is
irregular [59, 60] for the differential equation (17) at the origin h=0: i.e., for the
wave equation (13) at the point at infinity j=a.

2.3.    

A differential equation with a regular singularity at the origin and an irregular
singularity at infinity of degree one 0(1/h)0 0(j) may be reducible to the confluent
hypergeometric type [67, 68], of which Weber’s parabolic cylinder functions are a
particular case. The singular coefficient is 0(1/h3) in equation (17), and 0(j3) in
equation (13), which shows that the irregular singularity is of higher order, and
reduction to a confluent hypergeometric equation is not immediate. It follows that
these, or a particular case, like Weber’s functions, may supply a solution of the
problem only if a change of dependent variable is made. In fact, no further change
of dependent variable is needed, because the wave equation (13) has two
singularities only, at the origin and at the point at infinity, and the solution around
either of these is valid in a region excluded by the order: i.e., it has an infinite radius
of convergence. The solution around the point at infinity is more complicated,
because the latter is an irregular singularity, and besides, it holds only for =j=q 0,
and thus fails to converge at the critical layer.

This suggests the choice of the solution around the regular singularity at the
origin, because (i) it specifies the acoustic field at the critical layer (j=0 or y= yc ),
and also in the whole flow region (jQ 1 or yq 0), except at infinity (y=a or
j=−a), where the flow velocity itself diverges and (ii) the Frobenius–Fuchs
method [59–62] can be applied: i.e., a solution exists as a power series

Fs (j)= js s
a

n=0

an (s)jn, (18)

with index s and a recurrence formula for the coefficients an to be determined. The
latter is obtained by substituting equation (18) in equation (13), and equating to
zero the coefficients of each power of j, viz.,

(n+ s)(n+ s−3)an (s)= aan−2(s)− aban−4(s). (19)
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Note that this recurrence formula is quickly convergent for large n, because the
coefficient of an is 0(n2), and the coefficients of an−2, an−4 are 0(1): i.e., successive
iterations behave like 0(1/n2). The appearance of the term an−4 is due to the high
order of the irregular singularity at infinity.

Setting n=0 in the recurrence relation (19) yields

s(s−3)a0(s)=0. (20)

Note that a0 $ 0, otherwise by equation (19) all an =0, leading to a trivial solution
F=0 in equation (18). Thus equation (20) leads to the indicial equation
s(s−3)=0, showing that the two possible values of the index s1 =3, s2 =0,
differ by an integer s1 − s2 =3. The recurrence formula (19) holds for ne 4, and
for smaller values simplifies to

(s+1)(s−2)a1(s)=0, (s+2)(s−1)a2(s)= aa0(s),

(s+3)sa3(s)= aa1(s), (21a–c)

since 0= a−1(s)= a−2(s)= · · · because the corresponding negative powers are
absent from the Frobenius–Fuchs series expansion (18). The latter, together with
equations (19, 20, 21a–c) suffice to determine two linearly independent solutions,
corresponding to the two values s1 =3 and s2 =0 of the index.

3. PAIR OF LINEARLY INDEPENDENT SOLUTIONS

The linearly independent solutions are functions which are even and odd relative
to the critical layer, and can be used to demonstrate the effects of frequency and
wavenumber, in the case of real waveforms.

3.1.      

For the index s1 =3, the coefficients of odd order in equations (21a), (21c) and
(19) all vanish,

s1 =3: 0= a1(3)= a3(3)= · · ·= a2n+1(3), (22)

leaving as potentially non-zero only the even coefficients; a0(3) in equation (20)
in arbitrary because 0a0 =0, and the remaining coefficients of even order are
related to a0 (21b), (19) by

s1 =3: 10a2(3)= aa0(3), 2n(2n+3)a2n (3)= a[a2n−2(3)− ba2n−4(3)].

(23a, b)

The non-zero coefficients may be redesignated as

bn 0 a2n (3): 10b1 = ab0, 2n(2n+3)bn = a(bn−1 − bbn−2),

(24a, b)

and they specify a solution (18) as

F3(j)= s
a

n=0

a2n (3)j2n+3, (25a)
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which is an odd function

b0 0 1: F(j)0 s
a

n=0

bnj
2n+3 =−F(−j), (25b)

of the distance from the critical layer.
Concerning the other index s2 =0, it follows from equation (21c) that

0a3(0)=0, so that a3(0) is arbitrary. If it is assumed that it is non-zero, then upon
starting with a3(0)$ 0, the recurrence formula (19) leads again to the preceding
solution (25a), within a constant multiplying factor. Since the aim is to obtain a
solution which is linearly independent of equation (25a), there is no loss of
generality in setting a3(0)=0. Since for s2 =0 it follows from equation (21a) that
a1(0)=0, then all coefficients of odd order vanish,

s2 =0: 0= a1(0)= a3(0)= · · ·= a2n+1(0), (26)

as in equation (22). From equation (20) it follows that 0a0(0)=0, so that a0(0)
is arbitrary, and a non-zero value a0(0)$ 0 is necessary to avoid a trivial solution;
the remaining coefficients of even order are related to a0(0) by equations (21a) and
(19):

s2 =0: −2a2(0)= aa0(0), 2n(2n−3)a2n (0)= a[a2n−2(0)− ba2n−4(0)].

(27a, b)

Upon redesignating the coefficients

dn 0 a2n (0): −2d1 = ad0, 2n(2n−3)dn = a(dn−1 − bdn−2),

(28a, b)

these specify a solution (18)

F0(j)= s
a

n=0

a2n (0)j2n, (29a)

which is an even function

d0 0 1: G(j)0 s
a

n=0

dnj
2n =G(−j), (29b)

of the distance from the critical layer, and hence linearly independent of the
solution specified by equations (25a, b).

3.2.     

The decomposition of the wave field into functions which are respectively even
(29b) and odd (25b) relative to the critical layer has arisen naturally from the
application of the Frobenius–Fuchs method to the wave equation; the existence
of this decomposition has been overlooked in the literature, due to the use of
further changes of variable, which are necessary to reduce the problem to known
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Figure 2. Part of the acoustic pressure spectrum which is (25b; 24a, b) an odd function of
dimensionless distance from the critical layer, plotted as function of the dimensionless distance from
the wall for a range (31b) of six critical layer distances; effect of varying the ratio of wave frequency
to mean flow vorticity (14a), while keeping fixed the ratio of horizontal phase speed to sound speed.
b=5.

special functions. This decomposition shows that the two functions are linearly
independent, and hence that the general integral of equation (13) is a linear
combination of equations (25b) and (29b):

P(y; k, v)=AF(1−Y)+BG(1−Y), Y0 y/yc =1− j, (30a, b)

where Y (30b) is (12a) the distance from the wall, made dimensionless by dividing
by the distance from the critical layer. The constants of integration A, B are
determined from boundary conditions. Note in passing that b0 in equation (25b)
and d0 in equation (29b) can be incorporated respectively in the arbitrary constants
A and B, and thus there is no loss of generality in setting b0 0 10 d0.

Since different pairs of boundary conditions give different values of A, B, it is
preferable to plot separately the two components of the solution, to illustrate the
decomposition of the general wave field in components symmetric G and
skew-symmetric F relative to the critical layer, which is the main feature of the
present paper distinguishing it from the preceding literature. The acoustic fields
are plotted versus dimensionless distance from the critical layer (12a) or from the
wall (30b),

−5E jE 1, 0EY0 y/yc E 6, (31a, b)

covering a range of distances from the wall equal to six times the distance of the
critical layer. The odd F (25b; 24a, b) and even G (29b; 28a, b) components of the
general acoustic field (30a), are plotted separately, respectively in Figures 2–5.
There are two dimensionless parameters (14a, b), to which the following reference
values are given,

a=1, b=5, (32a, b)

corresponding respectively to a wave frequency equal to the vorticity v= q, and
an horizontal wavenumber kz5=v/c; in the ray limit, in the absence of mean
flow, this corresponds to a transverse wavenumber K=z(v/c)2 − k2 =2k twice
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the horizontal wavenumber: i.e., propagation at an angle u=arc tan (K/k)
=arc tan 2=63·4° to the mean flow direction, which is horizontal. In Figure 4
(2) for the even (odd) function, the parameter b is kept fixed at (32b), and a takes
the values

a=0·1, 0·3, 1, 3, 5, (33)

ranging from wave frequencies lower than, to higher than, the vorticity; in Figure 5
(3) for the even (odd) function, a is kept fixed at (32a), and b takes the values

b=1, 3, 5, 7, 10, (34)

ranging from the ray limit to a transverse wavenumber from zero to three times
the horizontal wavenumber.

3.3.    

Concerning the odd function, and variations of the first parameter, it has long
oscillations with large amplitude for small frequency or large vorticity (Figure 2,
r.h.s.), and short oscillations of small amplitude for high frequency or small
vorticity (Figure 2, l.h.s.). The same trend applies to the odd function and
variations of the second parameter; i.e., (Figure 3), as the frequency increases or
horizontal wavenumber decreases, the oscillations reduce in amplitude and the
nodes are closer. Concerning the even function, the effects are different for the first
parameter, viz., as frequency increases or vorticity decreases the oscillation
amplitude increases and the nodes become more closely spaced; this contrast is
shown by the plots (in Figure 4) of the largest and smallest values of the parameter
(r.h.s.) and the three intermediate values (l.h.s.). Also concerning the even
function, and the dependence on the second parameter, the behaviour is less
markedly different (Figure 5) from the odd function; as frequency increases or
horizontal wavenumber increases, the amplitude of the oscillation decreases and
the nodes become closer, although less markedly so than before.

The separate plots of the even and odd parts of the acoustic field as functions
of the dimensionless distance from the wall, for various values of the two
dimensionless parameters, show a number of common features: (i) the oscillations
tend to grow in amplitude towards infinity, as the flow velocity diverges at large
distance for a linear velocity profile; (ii) the spacing of the nodes increases as the
critical layer is approached; (iii) in the vicinity of the critical layer there are no
oscillations at all, for the odd component vanishes, and the even component is
unity; (iv) the acoustic field does not vary much between the critical layer and the
wall, and large or marked oscillations occur only into the stream far from the
critical layer. Thus the critical layer acts such as to suppress oscillations in its
vicinity.

4. CASES WITH COMPLEX WAVEFUNCTION

By allowing the wall to be at a variable distance from the critical layer, instead
of distance unity, it is possible to reduce the problem to a single parameter. This
simplifies the representation of real waveforms, and is also convenient for complex
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wave fields; the latter may arise from a complex wavenumber or from other
boundary conditions, e.g., of impedance type.

4.1.    

The preceding solutions may be considered with a complex wavenumber:

k= kr +iki ; eikx =exp(ikrx) exp(−kix). (35)

In this case (2) the real park kr acts as the wavenumber, and the imaginary part
ki indicates the stability of the linear shear flow with regard to acoustic
disturbances, viz: (i) if ki q 0 they are exponentially damped (stability); (ii) if ki Q 0
they grow in space (instability); (iii) if ki =0 their amplitude is constant (neutral
stability). Note that the preceding corresponds to the study of stability in space,
starting from a real frequency v (it would be possible to do the reverse, i.e., study
stability in time, with real k and complex v). For this spatial stability approach,
the parameter a is real (14a), and the change of independent variable

z0 aj=(v/q)2(1− y/yc )= (v/q)2 −vky/q, U(z)0F(j)=P(y; k, v),

(36a, b)

transforms the wave equation (13) to

zU0−2U'+ z(gz2 −1)U=0, (37)

which involves a dimensionless parameter

g0 b/a2 = [q2/(kcv)]2. (38)

The change of independent variable (36a) keeps the critical layer at the origin
(z=0 for y= yc ), but places the wall at variable distance from it z=(v/q)2 = a

for y=0.
The parameter (38) is real for real wavenumber, and complex for complex

wavenumber; in the latter case the critical layer is at a real position (11b) for the
real frequency. In the case of complex frequency, the critical layer would be at a
complex position (11b). This feature is not uncommon, for other types of waves,
e.g., non-dissipative magnetosonic–gravity waves have a critical layer at a ‘‘real’’
altitude [36, 38, 69], and viscous and resistive Alfvén waves have a critical layer
at complex ‘‘altitude’’ [37, 39, 40, 66]. The meaning of a critical layer at a real
co-ordinate (or altitude) is that the wave equation has a regular singularity at this
point, with exponent s, so that if (i) Re (s)q 0 the wave field vanishes at the
critical layer, (ii) if Re (s)Q 0 the wave field is singular at the critical layer, (iii)
if Re (s)=0 the wave field is finite and non-zero at the critical layer. For example,
in the present problem of sound propagation, with real wavenumber k, in a linear
shear flow, of the preceding three cases, two occur: (a) the index s1 =3,
corresponds to a wave field (25b) which is an odd function of the distance from
the critical layer, and thus vanishes there (case (i) above with Re (s1)=3q 0); (b)
the index s2 =0, corresponds to a wave field (29b) which is an even function of
the distance from the critical layer, and is finite and non-zero there (case (iii) above
with Re (s2)=0). In the case of a critical layer at a complex co-ordinate (or
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altitude), the wave field is finite at all positions (i.e., on the real axis), because there
is no singularity there. The critical layer at a complex co-ordinate may still limit
the radius of convergence of a power series solution about another point.
However, in the present problem, the only other singularity of the wave equation
is the point at infinity. Thus when expanding in power series about the critical
layer, the radius of convergence is infinite, regardless of where the critical layer
is, i.e., whether it is at real or complex position. Thus the preceding solutions hold
equally well for real or complex wavenumber. The odd solution is (25b; 24a, b)
thus

H(z)= s
a

n=0

fnz
2n+3 = s

a

n=0

fn [(v/q)2(1−Y)]2n+3 =−H(−z), (39a)

with the recurrence formula for the coefficients being

f0 =1, f2 =1/10: 2n(2n+3)fn = fn−1 − gfn−2; (39b)

the even function (29b; 28a, b) is similarly:

J(z)= s
a

n=0

gnz
2n = s

a

n=0

gn [(v/q)2(1−Y)]2n = J(−z), (40a)

with the recurrence formula for the coefficients being

g0 =1, g1 =−1/2; 2n(2n−3)gn = gn−1 − ggn−2. (40b)

The two components of the wavefield, viz., odd (39a, b) and even (40a, b) may be
illustrated for real or complex wavenumber in terms of equation (38), the only
remaining parameter g.

The choice of parameters for equation (33) dimensionless frequency 0·1E aE 5
and equation (34) dimensionless wavenumber 1E bE 10 would lead, for the
single parameter (38), to 0·04=1/25E gE 1000, a very wide range of values. For
a real wavevector, a more modest range of values of g is chosen,

g=0·5, 1, 2, 8, (41)

Figure 3. As for Figure 2: effect of varying the ratio of horizontal phase speed to sound speed
(14b), while keeping fixed the ratio of wave frequency to vorticity. a=1.
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Figure 4. Part of the acoustic field which is (29b; 28a, b) an even function of the dimensionless
distance from the critical layer, plotted as a function of the dimensionless distance from the wall
for a range of six critical layer distances; effect of changing the ratio of wave frequency to mean
flow vorticity, and keeping fixed the ratio of horizontal phase speed to sound speed. b=5.

for plotting of the odd H (Figure 6) and even J (Figure 7) wave fields, versus the
dimensionless variable z (36a), measuring distance from the critical layer z=0.
Note that the parameter g equals (38) the square of the ratio q/v of vorticity to
frequency multiplied by the ratio q/kc of vorticity to ‘‘frequency’’ calculated for
horizontal propagation. Thus g is larger for stronger vorticity and lower frequency
and horizontal wavenumber. The odd wavefield H remains small (Figure 6)
between the wall and the critical layer, and towards the free stream, the acoustic
field diverges, sooner for larger g and with larger amplitude for smaller g. The even
wavefield J decays from the critical layer to the wall (Figure 7), more for larger
g; it is unity at the critical layer, and it diverges towards the free stream, as before
sooner for larger g and with larger amplitude for smaller g. The case of complex
g would give rise to complex wavefields; the latter also arise for impedance
boundary conditions, which are considered next.

4.2.    

The general wave field is again a linear combination of odd (39a, b) and even
(40a, b) solutions,

P(y; k, v)=CH(a(1−Y))+DJ(a(1−Y)), (42)

where C, D are arbitrary constants, specified by two independent, and compatible
boundary conditions. These could be (i) the acoustic pressure at two points in the
flow:

P(y1; k, v)=P1, P(y2; k, v)=P2. (43a, b)

The acoustic pressure p and the vertical velocity Vy are related by the y-component
of the linearized momentum equation,

−r−1 1p/1y=dvy /dt= 1vy /1t+U(y) 1vy /1x, (44)
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where r is the mass density of the mean flow; using the spectra of the pressure
(2) and acoustic velocity,

vy (x, y, t)=g
+

− g
a

a

Vy (y; k, v) ei(kx−vt) dk dv, (45)

leads to the polarization relation

dP(y; k, v)/dy=ir[v− kU(y)]Vy (y; k, v). (46)

Thus another set of boundary conditions, would be to specify (ii) the acoustic
pressure and transverse velocity, at the same point in the flow:

P(y1; k, v)=P1, V1 =−iP'(y1; k, v)/{r[v− kU(y1)]}. (47a, b)

A combination of (iii) acoustic pressure and velocity at different points, e.g.,
equations (43b) and (47b), would also do as a two-point boundary value problem.
One of the boundary conditions could be replaced by a boundary condition at the
wall. At the wall y=0, the free stream velocity vanishes U(0)=0, so that the
polarization relation (46) between acoustic velocity and pressure reduces to that
for a fluid at rest:

Vy (0; k, v)=−(i/rv)P'(0; k, v). (48)

Assuming a wall with impedance Z,

P(0; k, v)=ZVy (0; k, v), (49a)

leads to the boundary condition (iv)

P(0; k, v)+ i(Z/rv)P'(0; k, v)=0, (49b)

which is of third kind or mixed type. In the particular case of a rigid wall, i.e.,
infinite impedance (v),

Z=a: P'(0; k, v)=0, (50)

Figure 5. As for Figure 4: Effect of varying the ratio of horizontal phase speed to sound speed,
while keeping fixed the ratio of wave frequency to mean flow vorticity. a=1.
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Figure 6. As for Figures 2 and 3, the acoustic pressure spectrum which is (39a, b) an odd function
of the distance from the critical layer, is plotted versus modified dimensionless distance (36a, 14a),
for four values of the dimensionless parameter (38) combining vorticity, wave frequency and
wavenumber.

the normal derivative of the acoustic pressure vanishes, because the normal
acoustic velocity is zero. The boundary condition is replaced by

−(i/rv)P'(0; k, v)=V0(k, v), (51)

for (vi) a moving wall with prescribed normal velocity spectrum.
If the linear shear flow is matched to an uniform stream of velocity Ua,

U(y)=6 qy
qL0Ua

if
if

yEL,
yeL,7 , (52)

to simulate a boundary layer of thickness L, then one boundary condition can be
applied at infinity, e.g., a (vii) radiation condition, specifying an inward (−sign)
or outward (+sign) propagating wave,

as y:a: P(y; k, v)0 e2iKy, (53a)

where

K= =(v− kqL)2/c2 − k2=1/2, (53b)

is the transverse wavenumber in the free stream U(a)= qL. In the case of an
unbounded linear shear flow (4b), another possible boundary condition (viii)
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Figure 7. As for Figure 6, for the acoustic pressure spectrum which is (40a, b) an even function
of distance from the critical layer.

specifies the acoustic pressure at the critical layer, which determines the constant
of integration D in equation (42),

Pc (k, v)0P(yc ; k, v)=D, (54)

Figure 8. Total acoustic pressure spectrum (42), normalized (60a) to the value at a distance (60b),
plotted versus modified dimensionless distance (36a), for four values (41) of dimensionless parameter
(38), in the case of a rigid wall (50).
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Figure 9. As for Figure 8, for a compliant wall with specific impedance z0Z/rc=0·1, with
separate plots for amplitude (top) and phase (bottom).

because the odd solution H(z) vanishes (39a) at the critical layer H(0)=0, and
the even solution J(z) is (40a) unity J(0)= g0 0 1.

Most boundary conditions specify a relation between C and D; in equation (42)
e.g., (iv) the moving wall condition (51),

i(rq/k)V0(k, v)=CH'(a)+DJ'(a), (55)

where the prime denotes the derivative H'0 dH/dz with regard to z in equation
(36a). Solving equations (54) and (55) for C, D and substituting in equation (42),
leads to a first example (a) of the explicit acoustic pressure,

P(y; k, v)=Pc (k; v)J(a(1−Y))− [i(rq/k)V0(k; v)

+Pc(k; v)J'(a)]{H(a(1−Y))/H'(a)}, (56)

for the boundary conditions (vi), (viii). As another example (b), the impedance wall
condition (49b), applied to equation (42) yields

x0 kZ/rq: CH(a)+DJ(a)= ix[CH'(a)+DJ'(a)]; (57)
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together with equation (54), this shows that the acoustic pressure field which
satisfies the boundary conditions (iv; viii) is specified by

P(y, k, v)=Pc (k, v){H(a(1−Y))− J(a(1−Y))

× [J(a)− ixJ'(a)]/[H(a)− ixH'(a)]}. (58)

A particular case (c) is that of a rigid wall (50), i.e., the acoustic field satisfying
(v, viii) is given by

Z=a; P(y; k, v)=Pc (k, v){H(a(1−Y))− [J'(a)/H'(a)]J(a(1−Y))}, (59)

which corresponds to the limit x:a taken in equation (58).

4.3.    

As an example of the use of the preceding boundary conditions, the acoustic
pressure

Q(Y)0P(y; k, v)/P(y2; k, v), y2 = y(z=2)= yc (1−2/a), (60a, b)

normalized to the value (36a) at z=2, i.e., y*= yc (1−2/a), in equation (60b)
is plotted for the same values (41) of the parameter g as before (Figures 6 and 7),
but this time for the total acoustic field with (Figure 8) a rigid wall (impedance
Z=a), leading to a real wave field, (Figure 9) a compliant wall of specific
impedance z0Z/rc=0·1, requiring separate plots of =Q= amplitude (top) and
arg (Q) (bottom).

In the case of a rigid wall (Figure 8) the pressure increases towards the wall,
for intermediate values of g=2, and it decreases for small g=0·5, i.e., (38) for
weak vorticity, high frequency or large wavenumber. As g increases, (e.g., g=8),

Figure 10. Total acoustic pressure spectrum (42), normalized (61a) to the value at a distance (61b),
versus modified dimensionless distance (36a), for four values (62) of the dimensionless parameter
(38), and a rigid wall.
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Figure 11. As for Figure 10, for a wall of specific impedance z=0·1, leading to a complex
wavefield, with separate plots of amplitude (bottom) and phase (top).

i.e., for strong vorticity or low frequency or small wavenumber, the acoustic
pressure reverses from compression to depression. For large or small values of g

the acoustic pressure has an extremum at the critical layer, e.g., a maximum for
gE 1 and a minimum for g=8; the critical layer is not an extremum of the
acoustic pressure for intermediate values of g e.g., g=2.

In the case of a compliant wall (Figure 9), with specific impedance
z1Z/rc=0·1, the modulus of the acoustic pressure (top), shows that it is again
maximum at the critical layer, with the value of the maximum decreasing as g

increases, i.e., for stronger vorticity, lower frequency or smaller wavenumber; the
amplitude thus decays towards the wall, where it is smaller for increasing g. The
phase (bottom) varies little near the critical layer, in agreement with the earlier
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finding that the latter tends to suppress oscillations (section 3.3). Most of the phase
changes occur near to the wall, and near to the point z=2 of imposed pressure,
with a faster variation for smaller g, i.e., weaker vorticity, higher frequency or
larger wavenumber; these thus lead to larger absolute values of the negative phase
at its extremum (or minimum) near the critical layer z=0.

The next plot concerns also a wall of specific impedance z=Z/rc=0·1, but the
acoustic pressure is normalized (61a) as

R(Y)=P(y; k, v)/P(y4; k, v), y4 0 y(z=−4)= yc (1+4/a),

(61a, b)

Figure 12. As for Figure 11, with fixed g=1, and several values of wall impedance (63), viz., rigid
wall z=a, capacitive wall, z=0·1i, active wall z=0·1, and resistive wall z=0·1 (12 i).
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Figure 13. Acoustic pressure spectrum which is (39a, b) an even function of distance from the
critical layer, plotted versus modified dimensionless distance from the critical layers (36a), for
complex values (64) of dimensionless parameters (38), separating amplitude (bottom) and phase
(top).

to the value at z=−4 or (61b). The acoustic pressure field, for four real values

g=0·5, 1, 2, 4, (62)

of the parameter (38), is real for a rigid and complex for an impedance wall. In
the case of a rigid wall, the real wave field (Figure 10) varies little near the critical
layer z=0 and towards the wall zq 0, and oscillates towards the free stream. A
wall with specific impedance z=0·1 leads to a complex wave field (Figure 11)
requiring separate plots of modulus or amplitude (bottom) and argument or phase
(top). The amplitude (bottom) has a maximum near the critical layer z=0, and
decays towards the wall zq 0; towards the free stream zQ 0 there are diverging
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oscillations. At the zeros of the acoustic pressure (bottom), or nodes of the
waveform, there are phase jumps of p (top), between which the phase does not
vary much; thus the phase of the acoustic field looks like a ‘‘staircase’’ function,
with rounded-off phase jumps of p at the nodes of the wave form.

With the same normalization for the acoustic pressure (61a, b), but with the
parameter fixed at g=1, several values of the wall specific impedance are
considered,

g=1; z0Z/rc=a, 0·1, i0·1, 0·1(12 i), (63)

Figure 14. As for Figure 13, for an acoustic pressure spectrum which is (40a, b) an odd function
of distance from the critical layer.
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Figure 15. Total acoustic pressure spectrum (42), normalized (61a) to the value at a distance (61b),
versus modified dimensionless distance (36a), for a rigid wall and for four values (63) of the
dimensionless parameter (38), separating amplitude (top) and phase (bottom).

for plotting (Figure 12). The rigid wall z=a and the ‘‘capacitive’’ wall z=0·1i,
lead to the sharpest resonances and most abrupt phase jumps. The reactive wall
z=0·1 smooths the amplitude dips and phase jumps, with increased smoothing
for positive capacity z=0·1 (1+ i) and decreased smoothing for negative capacity
z=0·1 (1− i).

Complex wavefields arise regardless of boundary conditions, if the parameter
g is complex (38), i.e., for complex wavenumber k in equation (35) or frequency
v. The odd wavefunction H has (39a) the same modulus or amplitude for complex
conjugate values of g, which takes the values

g=12 0·1i, 12 0·2i, (64)
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for plotting (Figure 13); the amplitude (bottom) increases faster towards the free
stream zQ 0 for larger =Im (g)=, and all waveforms coalesce at the critical layer
z=0, where the wavefield is zero H(0)=0. The variation of the acoustic pressure
towards the wall is small, and not too sensitive to g. Concerning the phase (top),
apart from a phase jump of p at the critical layer, it does not vary towards the
wall. The phase varies more towards the free stream, and changes sign passing to
the conjugate g:g*, because this corresponds to the conjugate waveform
H(z):H*(z). The phase jumps (top) are more smoothed for positive capacity
g=1+0·1i, 1+0·2i than for negative capacity g=1−0·1i, 1−0·2i, but are not
too sensitive to the magnitude of the capacity =Im (g)==0·1, 0·2; conversely, the
amplitude (bottom) is not too sensitive to positive Im (g)=20·1, 20·2 or
negative capacity, but the amplitude is larger =Im (g)==0·2 for larger capacity than

Figure 16. As for Figure 15 for a wall with specific impedance z=0·1.
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Figure 17. As for Figure 15, for several types of wall: rigid z=a, reactive z=0·1, capacitive
z=0·1i, and impedance z=0·1 (12 i).

for smaller =Im (g)==0·1, the difference between the two increasing away from the
critical layer towards the free stream.

For the same values of the parameter g in equation (64), the even wavefunction
J in equation (40a), has similar amplitude and phase (Figure 14) towards the free
stream zQ 0, i.e., the amplitude oscillates and is not sensitive to the sign of Im (g)
whereas the phase changes sign with the sign of Im (g). The critical layer z=0
is a local amplitude maximum, with the acoustic pressure decaying towards the
wall zq 0. The phase changes are small near the critical layer.

The effect of complex values (64) of g is also shown for the total acoustic field
(42), with normalization (61a, b) to the value at z=−4 and for a rigid wall at
z= a=(v/q)2. The amplitude (Figure 15, bottom) varies little between the critical
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layer z=0 and the wall zq 0, and the phase (Figure 15, top) is almost constant.
Towards the free stream zQ 0, there is a phase jump of p where the amplitude
vanishes, and larger amplitude oscillations for smaller =Im (g)=. A change of sign
of Im (g) does not change the amplitude, but reverses the phase.

The same normalization (61a, b) and parameters (64), replacing a rigid z=a
by an impedance z=0·1 wall, leads to noticeable changes. The amplitude (Figure
16, bottom) has a local maximum at the critical layer z=0, decays towards the
wall zq 0 and oscillates towards the free stream zQ 0 as before; however, the
amplitudes are distinct for different g, increasing in the sequence g=1+0·2i,
1−0·2i, 1+0·1i, 1−0·1i. The phase (Figure 16, top) reverses sign with Im (g)
as before, but only for zQ−2, whereas for zq−2 it evolves the same way
regardless of the sign of Im (g).

The final set of plots retains the normalization (61a, b) of the acoustic pressure
at z=−4, fixes the parameter (38) at a complex value g=1+0·1i, and considers
several wall impedances (63). The amplitude (Figure 17, bottom) has a local
maximum at the critical layer z=0, and decays towards the wall zq 0, with larger
value at the maximum and more tendency to oscillate towards the wall for a
capacitive wall z=0·1i. Towards the free stream zQ 0 there are oscillations with
amplitude increasing in the order =0·1 (1+ i), a, 0·1, 0·1i, 0·1 (1− i). The phase
(Figure 17, top) shows jumps at the nodes of the waveform; the phase jumps of
p are sharper for the capacitive wall z=0·1i, and are slightly rounded off for the
rigid wall and smoother for other values of the wall impedance.

5. DISCUSSION

As general remarks it is noted that (a) the critical layer for sound in a shear flow
resembles the transition layers of atmospheric waves and other waves in fluids
[28, 30, 31, 38, 65] in that the oscillations die out in its vicinity, and the waveforms
separate, according to the parameters of the wave (frequency, wavenumber) and
background medium (scales of variation of properties), only as one moves away
from the critical layers, and (b) it is clear that there is absorption of sound when
the critical layer is transversed, in the sense that the acoustic pressure tends to be
smaller and oscillate less at the wall, than at some distance into stream. Thus the
presence of an acoustic critical layer could explain the attenuation of sound
observed to occur in boundary layers. For a range of boundary conditions,
including rigid and compliant walls, it is observed that the acoustic pressure tends
to be maximum at the critical layer, and to shift from compression to depression
for higher vorticity, lower frequency or smaller wavenumber.

In retrospect, the problem of sound propagation in a linear shear flow has been
reconsidered, leading to what is arguably the simplest solution in the literature:
a decomposition into solutions which are symmetric and skew-symmetric relative
to the critical layer. This solution follows by straightforward application of the
Frobenius–Fuchs method to the acoustic wave equation, starting from the
fundamental observation that there is only one singularity at finite distance, which
is regular, and corresponds to the critical layer. The plotting of these solutions
shows that the oscillations of the acoustic field, which occur towards the free
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stream, beyond the critical layer, die out in its neighbourhood, and are replaced
by a slow monotonic variation, in the region of the boundary layer, between the
critical layer and the wall. This can be loosely interpreted as meaning that the
critical layer acts as a reflector of sound waves coming from the free stream,
leaving only an evanescent acoustic field between the critical layer and the wall.
The present paper does not consider the question of non-linear evolution of the
critical layer, because the present theory gives no singularity there, i.e., linear
non-dissipative aeroacoustics [63, 64] is a self-consistent model.

A point discussed in the literature is the possible distinction between ‘‘acoustic’’
and ‘‘hydrodynamic’’ modes, as two types of perturbations of a shear flow, e.g.,
in the case of a sound source in a duct containing a shear flow [12] the ‘‘acoustic’’
modes were abscribed to the source and the ‘‘hydrodynamic’’ modes to the
existence of a critical layer; this classification would appear to imply that, in the
absence of an acoustic source, only ‘‘hydrodynamic’’ modes exist. In order to
check this, it is necessary to have first a definition of what an ‘‘acoustic’’ or
‘‘hydrodynamic’’ mode is. It is usual to associate ‘‘acoustic’’ modes with two
properties: (i) being irrotational; (ii) propagating at the sound speed. It has been
shown [2] that small amplitude perturbations of a linear shear flow cannot satisfy
(i) and (ii) simultaneously: i.e., (a) perturbations travelling at sound speed are
rotational and (b) irrotational perturbations do not travel at sound speed. One
could try to relax the definition of ‘‘acoustic’’ mode to just one condition, e.g., (i)
of being irrotational, allowing a distinction from the ‘‘hydrodynamic’’ mode,
which would be incompressible (or divergence-free). It will be shown in the
Appendix that, for small amplitude perturbations of a linear shear flow, the
vorticity and dilatation are in a constant ratio, and hence ‘‘acoustic’’ and
‘‘hydrodynamic’’ modes are always coupled, in the sense that a general
perturbation is both rotational and compressive; an equivalent conclusion, is that
a separation into ‘‘acoustic’’ and ‘‘hydrodynamic’’ modes is an arguable or
dubious notion, for small amplitude perturbations of a linear shear flow.
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APPENDIX: COUPLING OF DILATATION AND VORTICITY FOR SMALL
AMPLITUDE PERTURBATIONS OF A LINEAR SHEAR FLOW

The remark that acoustic waves in a shear flow can have a critical layer or
turning point has been made in the literature, e.g., [2, 12, 13], as well as the
discussion of ‘‘hydrodynamic’’ and ‘‘acoustic’’ modes [12, 2]. The approach to the
problem in the latter reference [2] will be further developed in this appendix. The
starting point is the conservation of vorticity V� in an isentropic flow, as stated by
Kelvin’s circulation theorem

V� 09gv� : 1V� /1t=9g(v� gV� ). (65)

The conservation law for an axial vector, like the vorticity V� , is distinct from the
conservation law for a scalar density, like the mass density r:

1r/1t+9 · (rv� )=0. (66)

The closest form of the two equations is

DV� /dt=(V� · 9)v� −V� (9 · v� ), Dr/dt=−r(9 · v� ), (67a, b)

where

D/dt0 1/1t+V� · 9 (68)
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is the material derivative. From equations (67a, b) follows readily the Beltrami
equation

D(V� /r)/dt= r−1(V� · 9)v� , (69)

which is a possible basis for attempting to distinguish between ‘‘acoustic’’ and
‘‘hydrodynamic’’ modes [2].

In the present case, of plane perturbation (vx , vy ) of a unidirectional linear shear
(qy, 0), the vorticity lies in the orthogonal plane,

V� =(q+V�) e� z , V� 0 1vy /1x− 1vx /1y , (70a, b)

and its perturbation (70b) involves the y-component of the velocity perturbation
spectrum (45), and the derivative with regard to y of the x-component:

vx (x, y, t)=gg
a

−a

Vx (y; k, v) ei(kx−vt) dk dv. (71)

Thus Beltrami equation reduces to

0=D(Vz /r)/dt, (72)

which may be linearized as

D[(V�r0 − r̄q)/r2
0 ]/dt=0, (73)

where r̄ is the density perturbation.
The latter satisfies the linearized equation (66) of continuity:

1r̄/1t+U 1r̄/1x+ r0(9 · v� )=0, (74)

Upon introducing the spectrum of the mass density

r̄(x, y, t)=gg
+a

−a

E(y; k, v) ei(kx−vt) dk dv, (75)

the equation of continuity becomes

r0D	 =i(v− kU)E=iv*E, (76a)

where v* is the Doppler shifted frequency (7), and D	 is the spectrum of the
dilatation,

D0 1vx /1x+ 1vy /1y. (76b)

The spectra of the vorticity (70b) and dilatation (76b),

V	 =ikVy −V'x , D	 =ikVx +V'y , (77a, b)

following from equations (45) and (71), where the prime denotes the derivative
with regard to y.
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Upon bearing in mind the linearization of the material derivative (68) in spectral
form,

D/Dt= 1/1t+U1/1x=−i(v− kU)=−iv*, (78)

the spectral form of the Beltrami equation (73) is

0=−i(v*/r2
0 )(V	 r0 −Eq). (79)

Substituting equation (76a) into this yields

0=−i(v*/r0)(V	 − qD	 /iv*). (81)

The conclusion is

V	 /D	 =−iq/v*0−iq/(v− kqy). (82)

Thus the spectra of the vorticity and dilatation are out-of-phase by p/2, and their
ratio equals the ratio of the vorticity of the mean flow (constant for a linear shear)
to the Doppler shifted frequency. It is thus clear that perturbations of vorticity
and dilatation are coupled, for small amplitude perturbations of a linear shear
flow. The only exception is the critical layer, where the Doppler shifted frequency
vanishes, and hence the dilatation also vanishes, by (76a).
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